2,269 research outputs found

    Lipids from Insects in Cosmetics and for Personal Care Products

    Get PDF
    Insects, the most varied group of known organisms on Earth, are arousing great interest also for the possibility to use them as a feed and food source. The mass rearing of some species, defined as “bioconverters”, is spreading worldwide, thanks to their sustainability. At the end of the bioconversion process, breeders obtain eco-friendly biomolecules of high biological and economic value, including proteins and lipids, from larvae of bioconverter insects, in particular Hermetia illucens. Besides the most classical use of insect lipids as food additives, they are also used in the formulation of several products for personal care. The composition of insect lipids depends on the substrate on which the insects are reared but also on the insect species, so the cosmetic producers should consider these features to choose their insect starting point. The most abundant fatty acids detected in H. illucens are lauric, myristic, palmitic, and oleic acids, regardless of feed substrate; its fatty acids composition is favorable for soap composition, while their derivatives are used for detergent and shampoo. Here, we offer an overview of insect lipids, their extraction methods, and their application in cosmetics and personal care products

    Current state of chitin purification and chitosan production from insects

    Get PDF
    Chitin, and especially its deacetylated variant chitosan, has many applications, e.g. as carrier material for pharmaceutical drugs or as a flocculant in wastewater treatment. Despite its versatility and accessibility, chitin, the second most abundant polysaccharide on Earth, has so far been commercially extracted only from crustaceans and to a minor extent from fungi. Insects are a viable alternative source of chitin, but they have not been exploited in the past due to limited availability. Today however, for the sustainable production of animal feed, insect farming is being developed substantially. The availability of large quantities of insect biomass and chitin-rich side products such as exuviae and exoskeletons has been increasing. This review provides an overview of recently published studies of chitin extraction from insects, its subsequent conversion into chitosan and the primary analytical methods used to characterize insect-based chitin and chitosan. We have discovered a large number of research articles published over the past 20 years, confirming the increased attention being received by chitin and chitosan production from insects. Despite numerous publications, we identified several knowledge gaps, such as a lack of data concerning chitin purification degree and chitosan yield. Furthermore, analytical methods used to obtain physicochemical characteristics, structural information and chemical composition meet basic qualitative requirements but do not satisfy the need for a more quantitative evaluation. Despite the current shortcomings that need to be overcome, this review presents encouraging data on the use of insects as an alternative source of chitin and chitosan in the future. © 2020 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI)

    Expression pattern analysis of odorant-binding proteins in the pea aphid Acyrthosiphon pisum

    Get PDF
    Odorant-binding proteins (OBPs) are soluble proteins mediating chemoreception in insects. In previous research, we investigated the molecular mechanisms adopted by aphids to detect the alarm pheromone (E)-\u3b2-farnesene and we found that the recognition of this and structurally related molecules is mediated by OBP3 and OBP7. Here, we show the differential expression patterns of 5 selected OBPs (OBP1, OBP3, OBP6, OBP7, OBP8) obtained performing quantitative RT-PCR and immunolocalization experiments in different body parts of adults and in the 5 developmental instars, including winged and unwinged morphs, of the pea aphid Acyrthosiphon pisum. The results provide an overall picture that allows us to speculate on the relationship between the differential expression of OBPs and their putative function. The expression of OBP3, OBP6, and OBP7 in the antennal sensilla suggests a chemosensory function for these proteins, whereas the constant expression level of OBP8 in all instars could suggest a conserved role. Moreover, OBP1 and OBP3 are also expressed in nonsensory organs. A light and scanning electron microscopy study of sensilla on different body parts of aphid, in particular antennae, legs, mouthparts, and cornicles-cauda, completes this research providing a guide to facilitate the mapping of OBP expression profiles

    Structural and functional characterization of a novel recombinant antimicrobial peptide from hermetia illucens

    Get PDF
    Antibiotics are commonly used to treat pathogenic bacteria, but their prolonged use con-tributes to the development and spread of drug-resistant microorganisms raising the challenge to find new alternative drugs. Antimicrobial peptides (AMPs) are small/medium molecules ranging 10–100 residues synthesized by all living organisms and playing important roles in the defense sys-tems. These features, together with the inability of microorganisms to develop resistance against the majority of AMPs, suggest that these molecules might represent effective alternatives to clas-sical antibiotics. Because of their high biodiversity, with over one million described species, and their ability to live in hostile environments, insects represent the largest source of these molecules. However, production of insect AMPs in native forms is challenging. In this work we investigate a defensin-like antimicrobial peptide identified in the Hermetia illucens insect through a combination of transcriptomics and bioinformatics approaches. The C-15867 AMP was produced by recombi-nant DNA technology as a glutathione S-transferase (GST) fusion peptide and purified by affinity chromatography. The free peptide was then obtained by thrombin proteolysis and structurally characterized by mass spectrometry and circular dichroism analyses. The antibacterial activity of the C-15867 peptide was evaluated in vivo by determination of the minimum inhibitory concentration (MIC). Finally, crystal violet assays and SEM analyses suggested disruption of the cell membrane architecture and pore formation with leaking of cytosolic material

    A mobile black soldier fly farm for on-site disposal of animal dairy manure

    Get PDF
    Black soldier fly (BSF), Hermetia illucens (L.) (Diptera Stratiomyidae), is a saprophagous insect that is receiving a growing scientific and economic interest since during the larval stage it is extremely voracious and able to consume a wide range of organic materials. This ethological characteristic is particularly suitable for waste management at industrial scale. The extraordinary ability to accumulate high levels of proteins and lipids, allows the use of resulting larvae as animal feed or biodiesel production; the residue of the bioconversion process, that consists of larval frass and not converted organic matter is assimilable to organic fertilizer. The aim of this study was to evaluate the bioconversion process by black soldier fly larvae (BSFL) on fresh and mature dairy manure. A “mobile bioconversion unit” that works as a mobile breeding unit was used, allowing to carry out bioconversion tests directly on fields, in different livestock farms located on the Basilicata territory (Italy). Total larval and frass biomass, bioconversion yield, BSFL development time and substrate reduction were evaluated for each treatment. All the analysed parameters differed from the control (larvae fed in standard diet) but not between the two substrates from the zootechnical chain. Although development time significantly differed across treatments, BSF correctly grow and reduce all substrates confirming larvae can be used to bioconvert animal manure reducing the undesired effects occurring from mismanaged this kind of substrate

    Amyloid/Melanin distinctive mark in invertebrate immunity

    Get PDF
    Protostomes and Deuterostomes show the same nexus between melanin production, and amyloid fibril production, i.e., the presence of melanin is indissolubly linked to amyloid scaffold that, in turn, is conditioned by the redox status/cytoplasmic pH modification, pro-protein cleavage presence, adrenocorticotropin hormone (ACTH), melanocyte-stimulating hormone (\u3b1-MSH), and neutral endopeptidase (NEP) overexpressions. These events represent the crucial component of immune response in invertebrates, while in vertebrates these series of occurrences could be interpreted as a modest and very restricted innate immune response. On the whole, it emerges that the mechanisms involving amyloid fibrils/pigment synthesis in phylogenetically distant metazoan (viz, cnidaria, molluscs, annelids, insects, ascidians and vertebrates) are evolutionary conserved. Furthermore, our data show the relationship between immune and neuroendocrine systems in amyloid/melanin synthesis. Indeed the process is closely associated to ACTH-\u3b1-MSH production, and their role in stress responses leading to pigment production reflects and confirms again their ancient phylogeny

    A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae)

    Get PDF
    Antimicrobial peptides (AMPs) play a key role in the innate immunity, the first line of defense against bacteria, fungi, and viruses. AMPs are small molecules, ranging from 10 to 100 amino acid residues produced by all living organisms. Because of their wide biodiversity, insects are among the richest and most innovative sources for AMPs. In particular, the insect Hermetia illucens (Diptera: Stratiomyidae) shows an extraordinary ability to live in hostile environments, as it feeds on decaying substrates, which are rich in microbial colonies, and is one of the most promising sources for AMPs. The larvae and the combined adult male and female H. illucens transcriptomes were examined, and all the sequences, putatively encoding AMPs, were analysed with different machine learning-algorithms, such as the Support Vector Machine, the Discriminant Analysis, the Artificial Neural Network, and the Random Forest available on the CAMP database, in order to predict their antimicrobial activity. Moreover, the iACP tool, the AVPpred, and the Antifp servers were used to predict the anticancer, the antiviral, and the antifungal activities, respectively. The related physicochemical properties were evaluated with the Antimicrobial Peptide Database Calculator and Predictor. These analyses allowed to identify 57 putatively active peptides suitable for subsequent experimental validation studies

    Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance

    Get PDF
    Misuse and overuse of antibiotics have contributed in the last decades to a phenomenon known as antibiotic resistance which is currently considered one of the principal threats to global public health by the World Health Organization. The aim to find alternative drugs has been demonstrated as a real challenge. Thanks to their biodiversity, insects represent the largest class of organisms in the animal kingdom. The humoral immune response includes the production of antimicrobial peptides (AMPs) that are released into the insect hemolymph after microbial infection. In this review, we have focused on insect immune responses, particularly on AMP characteristics, their mechanism of action and applications, especially in the biomedical field. Furthermore, we discuss the Toll, Imd, and JAK-STAT pathways that activate genes encoding for the expression of AMPs. Moreover, we focused on strategies to improve insect peptides stability against proteolytic susceptibility such as D-amino acid substitutions, N-terminus modification, cyclization and dimerization
    • …
    corecore